sensor uas


Sensor LDR dan PIR - Lampu dan Pintu Rumah Otomatis




1. Tujuan [kembali]  
  • Untuk mengetahui pengertian sensor LDR dan PIR
  • Untuk mengetahui fungsi komponen yang digunakan
  • Untuk mengetahui grafik respon sensor LDR dan PIR
  • Untuk dapat membuat rangkaian aplikasi gabungan sensor LDR dan PIR
  • Untuk mengetahui prinsip kerja gabungan sensor LDR dan PIR
2. Komponen yang digunakan [kembali]  
  • Sensor LDR
  • Sensor PIR
  • Baterai
  • Resistor
  • Transistor BC547 (NPN)
  • Relay
  • Lampu
  • Alternator
  • Dioda
  • Op-Amp
  • Motor DC
  • Logicstate
3. Dasar Teori [kembali]  

A. Pengertian LDR

LDR (Ligh Dependent Resistor) adalah suatu komponen elektronik yang resistansinya tergantung pada intensitas cahaya. LDR di buat dari bahan Cadium Sulfida yang peka terhadap cahaya. LDR akan mempunyai hambatan yang sangat besar saat tidak ada cahaya mengenainya (gelap). Dalam kondisi ini hambatan LDR mampu mencapai 1M ohm, akan tetapi pada saat LDR mendapat cahaya hambatan LDR akan menurun menjadi beberapa puluh ohm saja.

Gambar 1. Bahan yang digunakan pada LDR

Pada saat gelap atau cahaya redup, bahan dari cakram pada LDR menghasilkan elektron bebas dengan jumlah yang relatif kecil. Sehingga hanya ada sedikit elektron untuk mengangkut muatan elektrik. Artinya pada saat cahaya redup LDR menjadi pengantar arus yang kurang baik, atau bisa disebut juga LDR memiliki resistansi yang besar pada saat gelap atau cahaya redup.

Pada saat cahaya terang, ada lebih banyak elektron yang lepas dari bahan semikonduktor tersebut. Sehingga akan ada lebih banyak elektron untuk mengangkut muatan elektrik. Artinya pada saat cahaya terang LDR menjadi konduktor atau bisa disebut juga LDR memilki resistansi yang kecil pada saat cahaya terang. LDR digunakan untuk mengubah energi cahaya menjadi energi listrik. Saklar cahaya otomatis adalah salah satu contoh alat yang menggunakan LDR. Akan tetapi karena responsnya  terhadap cahaya cukup lambat, LDR tidak digunakan pada situasi dimana intesitas cahaya berubah secara drastis.


Rangkaian elektronik yang dapat digunakan untuk LDR adalah rangkaian yang dapat mengukur nilai resistansi dari LDR tersebut. Dari hukum ohm, diketahui bahwa:

V = I.R

Dengan V adalah beda potensial antara dua titik, I adalah arus yang mengalir di antara-nya, dan R adalah resistansi di antara-nya. Lebih lanjut dikatakan pula bahwa nilai R tidak bergantung dari V ataupun I. Sehingga, jika ada perubahan nilai resistansi dari R, maka nilai tegangan V-nya pun akan berubah. Jika beda potensial di-set tetap, maka perubahan resistansi hanya akan mempengaruhi besar arusnya. Dan persamaan tersebut akan menjadi:

I = V / R

Karakteristik Sensor LDR

Gambar 2. Light Dependent Resistors dan Simbolnya

Adapun spesifikasi atau karakteristrik umum dari sensor cahaya LDR adalah sebagai berikut :
  • Tegangan maksimum (DC): 150V
  • Konsumsi arus maksimum: 100mW
  • Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ
  • Puncak spektral: 540nm (ukuran gelombang cahaya)
  • Waktu Respon Sensor : 20ms – 30ms
  • Suhu operasi: -30° Celsius – 70° Celcius
B. Pengertian PIR

Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar.


Gambar 3. Passive Infra Red


Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.



Sensor PIR terdiri dari beberapa bagian yaitu :

1. Fresnel Lens

Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

2. IR Filter

IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

3. Pyroelectric Sensor

Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

4. Amplifier

Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.

5. Komparator

Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output. 


Gambar 4. Diagram block PIR

C. Komponen Lainnya

1. Baterai


Baterai merupakan sebuah alat yang mengubah energi kimia yang tersimpan menjadi energi listrik. Pada percobaan kali ini, baterai berfungsi sebagai sumber daya.

2. Resistor

Resistor memiliki nilai resistansi atau hambatan yang berfungsi untuk menghambat dan mengatur arus listrik yang mengalir dalam rangkaian. Resistor memiliki dua pin untuk mengukur tegangan listrik dan arus listrik, dengan resistansi tertentu yang dapat menghasilkan tegangan listrik di antara kedua pin. Nilai tegangan terhadap resistansi berbanding lurus dengan arus yang mengalir.

3. Transistor

Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal (switching), stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Pada rangkaian kali ini digunakan transistor BC547 bertipe NPN. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis melebihi arus pada kaki kolektor  atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff (saklar tertutup).

4. Alternator

Alternator pada rangkaian sebagai gambaran dari listrik AC dari pusat penyedia listrik.

5. Relay


Prinsip kerja dari relay yaitu ketika arus mengalir ke relay maka relay terhubung, sedangkan ketika arus tidak ada, maka relay akan terputus.

6. Diode



Dioda adalah komponen aktif dua kutub yang bersifat semikonduktor yang memperbolehkan arus listrik mengalir ke saru arah dan menghambat aliran arus listrik dari arah sebaliknya.

7. Lampu


Lampu  adalah sebuah peranti yang memproduksi cahaya ketika mendapatkan arus.


8. Op-Amp

Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

9. Motor DC 



Motor listrik yang memerlukan suplai tegangan arus searah pada kumparan medan untuk diubah menjadi energi gerak mekanik.

4. Grafik Respon Sensor LDR dan PIR  [kembali]  

 A. LDR



Dari grafik dapat disimpulkan bahwa besarnya hambatan atau resistansi dari sensor ldr dipengaruhi oleh intensitas cahaya yang diberikan, dan dapat dilihat bahwa semakin besar intensitas cahaya maka nilai resistansinya akan semakin kecil dan begitu sebaliknya.

B. PIR 


1. Respon terhadap arah, jarak, dan kecepatan




Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.

2. Respon terhadap suhu 


Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR. 

5. Prinsip Kerja [kembali]  

Pada rangkaian ini, LDR dan R1 sebagai pembagi tegangan serta Motor DC sebagai pintu yang akan otomatis bergerak ketika PIR mendeteksi adanya infrared. 

Saat LDR tidak mendapakan cahaya (gelap) maka hambatan pada LDR semakin besar, yaitu >1M dan R1 kecil, sehingga tegangan dari baterai menjadi sangat kecil dan arusnya tidak dapat mengalir ke kaki basis Transistor Q1 dan Transistor Q2 dan kemudian tidak dapat mengaktifkan relay RL1 karena tidak ada arus atau tegangan yang lebih kecil dari yang diperlukan.

Saat LDR mendapatkan cahaya maka hambatannya menjadi kecil <100k sehingga tegangan dari baterai menjadi tidak banyak berkurang dan arusnya dapat mengalir ke kaki basis Transistor Q1 dan arus dari baterai dapat mengalir ke kaki kolektor Transistor Q1 yang kemudian arus dapat mengalir dari kaki emitor Transistor Q1 dan kemudian arus mengalir ke kaki basis Transistor Q2. Karena terdapat arus pada kaki basis Transistor Q2, maka arus dari baterai akan mengalir ke kaki kolektor Transistor Q2 dan arus keluar dari kaki emitor Transistor Q2. Arus ketika menuju kaki kolektor Transistor Q2 terlebih dahulu melewati relay sehingga mengaktifkan relay RL1.

Disisi lain, ketika sensor PIR berlogika 0, maka tidak akan ada tegangan yang dioutputkan dan arus tidak akan mengalir ke relay RL2 untuk diaktifkan. Sedangkan ketika sensor PIR berlogika 1, maka akan ada tegangan yang dioutputkan dan arus akan mengalir ke op-amp (Non-Inverting) dan tegangan akan diperkuat sehingga dapat menggerakkan Motor DC dan mengaktifkan relay RL2. 


Hubungan antara RL1 dan RL2 :



LDR
PIR
Lampu
Motor DC (Pintu)
Tidak ada cahaya/redup
Logika 0
Mati
Mati
Tidak ada cahaya/redup
Logika 1
Hidup
Bergerak/Aktif
Ada cahaya
Logika 0
Mati
Mati
Ada cahaya
Logika 1
Mati
Bergerak/Aktif

6. Rangkaian
 [kembali]  




7. Video [kembali]  




Tidak ada komentar:

Posting Komentar